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Abstract. Hyperion is a hyperspectral sensor on board NASA's EO-I satellite with a spatial
resolution of approximately 30 m and a swath width of about 7 km. It was originally designed
for land applications, but its unique spectral configuration (430 nm - 2400 nm with a -10 nm
spectral resolution) and high spatial resolution make it attractive for studying complex coastal
ecosystems, which require such a sensor for accurate retrieval of environmental properties. In
this paper, Hyperion data over an area of the Florida Keys is used to develop and test
algorithms for atmospheric correction and for retrieval of subsurface properties. Remote-
sensing reflectance derived from Hyperion data is compared with those from in situ
measurements. Furthermore, water's absorption coefficients and bathymetry derived from
Hyperion imagery are compared with sample measurements and LIDAR survey, respectively.
For a depth range of - I - 25 m, the Hyperion bathymetry match LIDAR data very well
(-11% average error); while the absorption coefficients differ by -16.5% (in a range of 0.04 -
0.7 m for wavelengths of 410, 440, 490, 510, and 530 nm) on average. More importantly, in
this top-to-bottom processing of Hyperion imagery, there is no use of any a priori or ground
truth information. The results demonstrate the usefulness of such space-borne hyperspectral
data and the techniques developed for effective and repetitive observation of complex coastal
regions.

Keywords: aquatic environment, satellite, remote sensing, bathymetry, LIDAR.

I INTRODUCTION

Coastal and estuarine regions are important parts of the coastal ecosystem. They are not only
the productive water that support the fishery industry, but also are more directly related to
human activities via recreation. However, as a result of population expansion and economic
development as well as a variety of natural events, many coastal areas have suffered shoreline
erosions, declines in aquatic species, losses in seagrass beds, and bleaching of coral reefs [e.g.,
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1, 2]. Eutrophication and sediment resuspension contribute to the deterioration of water
clarity that leads to change of ecosystems, whereas shoreline erosion and redeposition alter
coastal navigations. Such changes demand efficient and reliable updating of its status.

The traditional bathymetry and water property monitoring technique requires frequent
ship surveys. While this kind of observation can provide detailed information about the
chosen sites, it cannot show what happens to the broader coastal environment, and may miss
places of dramatic change. To document the properties of the broad coastal environment
instead of a few chosen sites, repetitive measurements by satellite sensors offer an attractive
alternative. However, to adequately monitor complex coastal environments [3] via ocean
color radiometry (OCR) requires not only sophisticated sensors but also advanced data
processing algorithms [4].

For shallow coastal waters, Lee and Carder [5] have demonstrated that reliable derivation
of water and bottom properties from spectral remote sensing requires a sensor with
hyperspectral capability. Current operational satellite sensors designed for observation of
biogeochemical properties of the global ocean, such as SeaWiFS or MODIS, have only about
8 spectral bands in the visible-infrared domain and a large spatial footprint (-I km). Such
sensors can provide valuable observations on properties of the open ocean, but they cannot
provide the detailed spectral and spatial information needed for shallow coastal environments.

The Hyperion sensor on board NASA's EO-I platform [6] has more than 200 channels
covering --430 nm to 2400 nm and a ground resolution of about 30 m (for nadir viewing).
Hyperion was designed for bright land targets and it has a marginal Signal-to-Noise Ratio
(SNR) for dark ocean targets. Its spectral and spatial characteristics, however, are
significantly better suited for the study of coastal waters than sensors such as SeaWiFS or
MODIS.

The SNR of Hyperion is typically in the range of 50 - 150, whereas the SNR of SeaWiFS
or MODIS are around or better than 500. The low SNR has a large impact on water
observation. Water targets typically have much weaker signal than land targets. Thus
Hyperion may not have enough sensitivity to differentiate the subtle change of water
properties. Consequently it has been perceived that Hyperion would have little usefulness for
water observations. On the other hand, for many shallow coastal areas, due to the increased
turbidity of water, and in places with strong reflectance from the bottom, the signals
emanating from the water surface can be much stronger than that from open ocean waters. An
earlier study by Brando and Dekker [7] of Hyperion data over Moreton Bay (Australia)
clearly demonstrated that Hyperion imagery could be very useful in mapping water properties
of coastal areas. That study, however, was focused on the properties of the water column
(such as concentrations of chlorophyll and suspended particles, and absorption of yellow
substance); and utilized only Hyperion-collected spectral information at 490 nm, 670 nm, and
the average in the range of 700 - 740 nm. Also, similar to the traditional standard strategy, the
atmospheric correction in Brando and Dekker [7] requires that both the sensor and the
atmosphere model provide accurate top-of-atmosphere (TOA) spectral radiance (LXX). X is the
wavelength in air and is omitted in the remainder of the text for brevity unless needed for
clarification.) in order to obtain reliable water-leaving radiance (L.). Unfortunately the
radiometric accuracy of L, is only about ±5% for Hyperion [8], which may cause significant
errors in L. because L. is generally no more than 10-20% of L, [9].

In this study, using Hyperion data collected over the Florida Keys as an example, we
present a practical image-driven method for correcting the effects of atmosphere for such
sensors. Furthermore, the corrected signal (remote-sensing reflectance of water) is fed into a
hyperspectral optimization processing scheme [10, 11] to derive properties of the water
column and the bottom. Hyperion derived results are then compared with in situ and LIDAR
measurements, respectively, to evaluate the performances of the methods. The excellent
agreement demonstrates that hyperspectral data, even from sensors such as Hyperion with
low SNR, when used with this innovative method for atmosphere correction and the advanced
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algorithm for retrieval of environmental properties, can provide reliable and useful

information for effective monitoring of coastal ecosystems.

2 DATA

Level I Hyperion data over Looe Key (Florida) collected on October 26, 2002 was provided
by the USGS. Because our focus is on water and bottom properties, only spectral information
in the range of 428 - 925 nm was used. The image was centered at 24*42'39" (N), 81022'15 '

(W). Figure I presents the full scene (before georeferencing) of this Hyperion collection. This
image covers clear oceanic waters, shallow waters with varying bottom reflectivity, and
complex out flows from nearby coasts. For this study, data analysis was focused on the sub-
scene (~ 140 km2, see Fig. 1, right) that overlaps most with available LIDAR bathymetry.

MW 4

Fig. 1. Hyperion collection (October 26, 2002) over the Florida Keys (before geo-
referencing). Left is the full scene; right is a subset that has both in situ and LIDAR
measurements (within the dashed box). Numbers in the subset indicate the locations
of the six stations with in situ measurements.
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During the collection of Hyperion data, in situ measurements of remote-sensing
reflectance (R., which is defined as ratio of water-leaving radiance (L.) to downwelling
irradiance just above the surface (Ed)) and water optical properties were also carried out at six
sites in the area (red dots in Fig. 1). Remote-sensing reflectance was measured using a
custom-made hand-held spectroradiometer [12] and water absorption coefficients were
measured with an AC-9 (Wetlabs, Inc., Philomath, OR). All measurements and data
processing followed the NASA protocols [13]. During the measurements, the sea state was
quite calm with a wave height -10 cm.

Bathymetry was also collected using the SHOALS (Scanning Hydrogrpahic Operational
Airborne Lidar Survey, http://shoals.sam.usace.army.mil ) system (but not exactly in the same
footprint). This system is an earlier version of CHARTS (Compact Hydrographic Airborne
Rapid Total Survey; NAVOCEANO), which is a survey system that includes hyperspectral
and topographic/hydrographic LIDAR. SHOALS probes the water with a 532 nm YAG laser
and uses the time difference between the surface return and the bottom return to measure the
bottom depth. For the Looe Key area, two surveys were collected using SHOALS but with
slightly different ground coverage. One was obtained the same day as the Hyperion image,
the other on December 10, 2004. To increase the area of overlapping coverage between
Hyperion and SHOALS data, the two LIDAR bathymetry data sets were combined to form
one image after no significant variations were found between the two. A 0.75 m subtraction
was made to the 2004 data to account for the tidal difference and to have a smooth transition
at the survey boundaries. To account for the tidal effects between the merged LIDAR set and
the Hyperion data, 0.2 m was subtracted from the merged LIDAR bathymetry prior to
comparison with that from Hyperion (see section 5).

3 IMAGE-DRIVEN METHOD TO CORRECT ATMOSPHERIC EFFECTS

To analytically derive water and/or bottom properties from any satellite ocean-color data, the
first step is to get high-quality spectral remote-sensing reflectance (Rn). It is R,, that contains
water and/or bottom information.

In general, the radiance measured by a sensor at any altitude (L,) can be expressed as

L, (A) = L A ) + t(A.) LJ (A), (!)

with La representing contributions from the atmosphere and sea-surface reflectance, and L.
for contributions from below the water surface. I is the transmittance of L. from sea surface to
sensor altitude. From Eq. 1 and the definition of R, we obtain

R,s(A) L,(A) - L. (A) (2)t(A) E (A)

To obtain R,, from L,, values of La, t, and Ed must be known. Conventionally, standard
approaches calculate values of La, t, and Ed based on models of radiative transfer for the
atmosphere [9, 14, 15], with the assumption that L, is measured with high accuracy both
spectrally and radiometrically. Since L. in general makes up <20% of L, such methods
require extremely high accuracy (within ±1% for ocean applications) in the measurement of
L, and high accuracy in the aerosol models. The Hyperion sensor, however, has a radiometric
accuracy of only ±5% in the measured L, [8). Such an uncertainty in L, may cause a 50% error
in L.. by the standard approach even with a perfect atmospheric model. Such large errors in
turn can cascade into significant uncertainties in the derived water and/or bottom properties.
As evidenced in Brando and Dekker [7] (their Fig. 2), the derived reflectance shows
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significant non-smoothness even after spatial average [7], although the relative error was not
large and water properties were derived reasonably well in that study.
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Fig. 2. (a) Pixels under the Sun and in the shadow used for correction of
atmospheric effects. (b) The TOA radiance in raw counts of the two adjacent pixels
under the Sun and clouds. (c) Derived atmospheric contribution to the TOA radiance
after using the Cloud-Shadow method (see text for details). (d). Averaged TOA
radiance of selected clouds.

To overcome the imperfect radiometric accuracy in Hyperion L,, we applied a practical
image-driven technique to correct the atmospheric contribution. This technique is an
extension of the cloud-shadow method developed by Reinersman et al. [16]. In that method

Journal of Applied Remote Sensing. Vol. 1.011502 (2007) Page 5



[16], L. is calculated from a pair of adjacent pixels that are in and out of a cloud shadow, with
t and Ed calculated separately from a radiative transfer model after deriving aerosol properties.
Therefore it does require the sensor to be well calibrated radiometrically and spectrally in
order to match the calculated I and Ed.

In our adjusted approach, we calculated L. in a similar but simplified fashion to that of
Reinersman et al. [16], but t and Ed were evaluated differently. Specifically, 1) 1 and Ed were
not explicitly derived separately; and 2) the product of I and Ed was estimated using the
reflected radiance from the top of clouds.

Mathematically, for a pixel outside the shadow (under the Sun), its radiance (L sun) can

be expressed as,

Ls, (A) = Ls, (A) + t(2) Ed(A) R, (A), (3)

with Ed including contributions from both the Sun and sky [17]. For an adjacent pixel in the

shadow that has the same water properties as that under the Sun, its radiance, Lsd, is given

by,

&w'(A) = L (A) + I(2) EA(A) & (A). (4)

The R,, under the Sun and in the shadow are actually slightly (<5%) different because of
the different illuminations [1 8-21 ] even when they have the same water and bottom properties.
This little difference is ignored here, however.

As an example, Figure 2a shows the locations of a pair of adjacent Sun-shadow pixels,
while Figure 2b presents their corresponding TOA radiances (in raw counts).

Assume that Ls"" = L;sad = L then the following is derived from Eqs. 3 and 4,

L (() = Lsu)n-LS (A)La3)L ( l_ESky()/ () (5

Because Esk / E can be estimated from Radtran [17] for a given location and at a given

time, La is then easily calculated from Eq. 5. Figure 2c presents the calculated La of the
selected Sun-shadow pair, which is in the same units as L, from the sensor (either in raw

counts or absolute radiance). The values of E / Ed depend on atmospheric conditions

(such as visibility, ozone depth, etc). However, in the process of deriving L. here, because

Ed '/ Ed is applied on the difference between e, " and Lsd' , and this difference is

significantly smaller than L5", errors in E s
k
y / E have only very limited effects on L.. For

instance, when Ep- / E
d were calculated separately with the visibility values of 15 km and

30 km and resulted in -30% difference in E s*y / E for the blue wavelengths, the maximum

difference in derived La was - 1%. Because of such negligible effects, ES4" /Ed of the Sun-

shadow pixels were calculated with the default atmospheric parameters in Radtran.
In this process of deriving La, it is more important to avoid sun glint that could contribute

to L but not to Ls &. This could be carried out by choosing pixel pairs with no, or

negligible, sun glint as we did here where the sun zenith angle was about 450 and the sensor
was nadir looking. One could also correct for sun glint first [22] before deriving La. To test
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the robustness of our process, another two pairs of adjacent Sun-shadow pixels from different
locations with different water properties were selected and L. calculated. The results (not
shown here) were nearly identical to that shown here. Such results validate the calculation
process and the assumption that La for this study was nearly uniform spatially.

To calculate R , the product of tEd is needed. For this component, we used the radiance
measured over the clouds to make the estimation. If we assume that the atmospheric
contribution is nearly uniform over the study area, the TOA radiance above a cloud is
approximated as

ld"(2) =La(A) + t(A) Ed(A) p, (6)

where p is the remote-sensing reflectance of the observed clouds. The p value corresponds to

the spectrum of LFtId, and is considered independent of wavelength based on measurements

made in the visible-infrared domain [23, 24]. Figure 2d shows averaged L d of a few
selected clouds. R, at any pixel was then calculated from

L,(A)- L,(A) 7)Ld(,A) La(2)

The value of p was determined from a clear water pixel by assuming R,(550 nm) value of

0.002 sr- [25], and a p value of --0.16 sf' was obtained for the averaged L tt of this study.

For other Hyperion images, an effective p value could be obtained by comparing its L" to

the L, used in this study.
To account for any residual contributions from the sky and the sea surface, a spectrally

constant value was removed from the above calculated R,, in order to obtain an average of
zero for the spectral range of 810 - 840 nm, where contributions from water are considered
null [26]. After these steps, R , of the entire Hyperion scene were derived. Figure 3 compares
spectra of Rr, derived from Hyperion to those from in situ measurements. Excellent agreement,
in both spectral shapes and spectral values, between the Hyperion R,, and the in situ Rr, are
obtained in four out of the six in situ stations. Note that these spectral Rr, varied widely from
station to station. However, for two stations (St.2 and St.5), while the spectral shapes of the
two R. spectra are quite consistent, respectively, the Hyperion R,, are significantly higher
than in situ Rr, in values. The reason for this mismatch is not absolutely certain but the in situ
measurements suggest that pixels had different water-bottom properties. Note that the water
or bottom properties were not uniform in those areas.

One obvious advantage of this image-driven approach to derive spectral R', is that L,, La

and LId5 come from the same sensor with all L, components collected nearly simultaneously.
Hence the derivation of Rr, does not depend on the absolute radiance value of L, because the
sensor's response function (calibration factor) is canceled out. This can be extremely useful
for sensors that are imperfectly calibrated or decay with time in uncontrollable and unknown
fashions. Also, since L. is in general the smaller spectrum of the image, it will be rare that R,
calculated by this approach be negative in the visible domain. This method, however, does
require a pair of adjacent Sun-shadow pixels with uniform surface properties, and this shadow
cannot be from thin clouds. Also, it does depend on the assumption that La is nearly uniform
for the study area. Such an assumption could be more problematic if the area under study is
quite wide (hundreds of kilometers), as L. is a function of many parameters that include
aerosol load, solar zenith angle, and relative azimuth angle, etc.
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Fig. 3. Derived remote-sensing reflectance from Hyperion measurements (open
symbol) and its comparison with that from in situ measurements (solid symbol).
Numbers in the boxes indicate total absorption coefficients at 440 nm measured by
an AC-9 (Wetlabs, Inc.).

4 RETRIEVAL OF BOTTOM AND WATER COLUMN PROPERTIES

To derive properties of the water column and bottom from Rr., we applied the spectral
optimization approach developed by Lee et al. [10, !1]. Briefly, the approach analytically
models R , spectrum as a function of five independent variables (representing properties of
water column and bottom) for optically shallow waters, i.e.,

Rr (li) = F(aW(l ), bbW,(,;l ), P, G, X, B, H)

R,s~ F(a.(, bb~.,, P, G, X, B, H)(8: (8)

R,(A,= F(a.(A,bb,, (A ,P,G,X,B,H)

Here aw and bbw are the absorption and backscattering coefficients of pure seawater, with
values taken from the literature [27, 28] and considered to not vary from place to place. P, G,
X, and B are scalar values and represent absorption coefficients of phytoplankton and
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gelbstoff (colored dissolved organic matter plus detritus), backscattering coefficient of
suspended particles, and bottom reflectance at a reference wavelength (normally 440 nm),
respectively; and H is the bottom depth. Although multiple bottom types could be
incorporated into the semi-analytical model [11, 29], it is only the spectral reflectance shape
of a sandy type bottom [ 11] is considered here as it was the dominant bottom substrate. To
derive the five unknowns, a computer module, Hyperspectral Optimization Processing
Execution (HOPE), has been developed. By varying the values of the five unknowns, they are
considered derived when the modeled R, spectrum best matches the Hyperion Rn, spectrum
[10, 11]. Unlike traditional empirical algorithms for bathymetry [30-32] that require many
assumptions and ground truth data before the derivation of bathymetry from R,,, HOPE
derives all the constituents from the imagery.

5 RESULTS AND DISCUSSION

As an example to show the spatial variation of water property of the study area, Figure 4 (left)
displays the water's total absorption coefficient at 440 nm (a(440), which is the sum of P, G
and a, at 440 nm) derived from Hyperion imagery, presented prior to geo-referencing (the
same for Fig. 5). Pixels of land and deep ocean are masked as white in order to emphasize the
properties of optically shallow waters (see Fig. 5). Spatially, we see a contrast of near uniform
distribution in the lower half, while a strongly varying distribution in the upper half that is
closely associated with land. Lower a(440) values (-0.04 m-) are generally found in the
bottom portion of the image while higher values (-0.6 m') are found for waters closer to land.
A systematic increase of a(440) (Note that lower a(440) indicates higher water clarity.) from
offshore to onshore in a pattern parallel to the coastal line is revealed. Such a distribution is
expected as the bottom portion is constantly mixing and exchanging waters with the nearby
clear oceanic waters by tides and currents (see Fig. 1); whereas the waters with higher a(440)
values are affected by land and river runoff. These spatial variations clearly indicate the
different forces (tides, currents, river flows) in modulating optical properties of coastal
ecosystem.

--A 0
o0 0 410
,0.6 0440

0.4
490

*510
0 A530

0

0.2

o0.0
0.0 0.2 0.4 0.60 0.3 0.6 0 1.2Water absorption at 440 nm [m-1  absorption coefficients from AC-9 [m']

Fig. 4. Left: Distribution (before geo-referencing) of water absorption at 440 nm
(a(440)) derived from Hyperion data (after 3x3 spatial average). Right: Comparison
between absorption coefficients from Hyperion and those from AC-9 measurements.
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To evaluate the accuracy of optical properties derived from Hyperion imagery, Figure 4
(right) compares Hyperion-derived absorption coefficients at the five blue-green wavelengths
(with center wavelengths at the vicinity of 410, 440, 490, 510, and 530 nm) with those
measured with an AC-9 instrument (Wetlabs, Inc.). Before matching data from in situ
measurements, a 3x3 spatial average was carried out to the Hyperion results. For four stations
(Sts.2, 4, 5, and 6) that have high-quality in situ absorption measurements (in a range of 0.036
- 0.73 m'), Hyperion results matched in situ values very well (average difference is - 16.5%).
The AC-9 values at St.3 were noisy and therefore excluded in this comparison. Most of the
errors (-40% underestimate at 410 nm) happened at St.5 where apparently the water was
quite dynamic due to runoff waters. Realizing that absorption coefficients from AC-9 were
not error free [33] and the study area was quite complex optically, the relatively small error
suggests very successful retrieval of water's total absorption coefficients from Hyperion. No
comparisons were made regarding the derived absorption coefficients of phytoplankton
pigments or colored dissolved organic matter because there were no in situ measurements
regarding these properties. It is generally understood, however, that less accurate results are
expected from ocean-color remote sensing for the individual components [34].

It is necessary to point out that both Hyperion data and in situ measurements showed
wide varying (by an order of magnitude) optical properties for such a small area (- 7 km in
width and 20 km in length). If a method to retrieve bottom properties relies on the assumption
of homogeneous spatial distribution of water's optical properties, then it will have difficulties
for such an area.

o 5 10 15 20 25 0 0.2 0.4 0.6 0.1

Fig. 5. Distribution (before geo-referencing) of bottom depth (left) and bottom
reflectance at 550 nm (right) derived from Hyperion data (after 3x3 spatial average).
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In contrast to the spatial patterns of the a(440) image, the images of bottom depth and
bottom reflectance (at 550 nm) from Hyperion show significantly different patterns (Fig. 5).
For the lower half of the image where a(440) is nearly uniform, the bathymetry and bottom
reflectance images show distinctive patchiness with wide variations in values. The Hyperion
bathymetry shows a variation between -1 and 25 m, with shallow bottoms and a deeper
channels clearly revealed (and the ship channel - known as the Hawk channel - parallel to the
coast). The bottom reflectance derived from Hyperion image is generally in a range of 0.05 -
0.4, which are reasonable and consistent with mud to quartz sand bottoms (unfortunately we
do not have sample measurements to make detailed evaluation). Also, in the middle of the
bottom reflectance image, the deposit and accumulation of land runoff is evident. These
distinctive patterns and results indicate that properties of bottom and the water column are
successfully separated.

To get both qualitative and quantitative evaluations of the bathymetry data derived from
the hyperspectral imagery, Hyperion bathymetry is compared with that obtained from the
SHOALS system (Fig. 6) after geo-referencing the Hyperion data and binning the LIDAR
data (which originally has a spatial resolution of -1 in). Figure 6 shows the spatial
distributions of the two bathymetry data sets. Further, using the data in Figure 6, a scatter plot
comparing the depths obtained with the LIDAR and Hyperion is presented in Figure 7a; while
Figure 7b shows the distribution of relative errors. Clearly, from Figure 6, both bathymetry
images show spatial patterns that mimic each other, except for a small portion in the upper
middle section (the oval circle) where Hyperion bathymetry is frequently shallower than
LIDAR bathymetry. This mismatch may be caused by land runoff that likely produced a two-
layer stratified water system. This may result in shallower bathymetry derived from the
HOPE processed Hyperion data than is actually present. Combining hyperspectral
observation with hydrodynamic models could improve retrievals for such environments, or at
least to flag it as an area with likely larger uncertainties.

Ln- K

Ln-Y

Bathymetry from LIDAR Bathymetry from Hyperion

Fig. 6. Left: Bathymetry from LIDAR measurements. Right: Bathymetry from
Hyperion data after geo-referencing. Pixels without LIDAR data, and those of land
and deep ocean, are masked as white.
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Quantitatively, for over 50,000 points that have measurements of bathymetry from both
systems and cover a range of -1 - 25 meters, the two data sets show very good agreement
(average percentage difference is -11%, Figure 7a). Overall 58% of the Hyperion bathymetry
are within ±10% of LIDAR bathymetry (Figure 7b). This percentage becomes 76% if the
difference is expanded to ±15% and 84% for ±20%. All these results indicate excellent
bathymetry retrieval from this Hyperion imagery using the HOPE scheme.

The reason for larger (-20%) overestimation at the locations where the Hyperion
bathymetry is greater than 20 m (-2% of data points, Figure 7a) is as yet unknown. It is
noticed, however, that 90% of such data points (Hyperion-derived bathymetry deeper than 20
m) occur at the lower boundary between shallow coastal water and deeper oceanic water
where bathymetry increases dramatically. Because the spatial resolution of Hyperion is -30 m,
the Hyperion signals of pixels in the boundary area are a mixture of shallow and deep water,
and therefore result in a deeper depth retrieval than is actually present. Fortunately such
pixels can be easily identified in an image and can be flagged.
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Bathymetry - Hyperion [m] (HHywjGon - HLIOAR)HLIDW

Fig. 7. (a) Quantitative comparison between Hyperion bathymetry and LIDAR
bathymetry. (b) Distribution of relative error when Hyperion bathymetry is
compared with LIDAR bathymetry.

To compare the two bathymetry data in detail, Figure 8 presents the bathymetry tracks
for the two transects (black lines) in Figure 6, respectively. These two transects cover wide
variations of bathymetry in the horizontal and vertical directions. Though we do observe
some mismatches in bathymetry values, overall there is excellent agreement both in patterns
and in actual values between the two independently determined bathymetry data sets. All
these results, both water column and bottom properties, indicate successful derivation of
environmental properties from hyperspectral imagery with the approaches used in this study.
These results echo the findings of Brando and Dekker [7] that Hyperion imagery is very
useful to observe environmental properties of complex coastal ecosystems.

6 SUMMARY AND CONCLUSIONS

In this study, using Hyperion data over Looe Key as an example, we demonstrate an
innovative approach to derive high-quality spectral R,, of the water from Hyperion imagery.
This new method uses differences in scene brightness to avoid the rigid requirement of
accurate radiometric calibration of the sensor, and overcomes the commonly encountered
problem of negative R,, in the blue wavelengths when using the standard atmosphere
correction scheme. The limitation of this new method is that it requires distinctive cloud
shadow in a near uniform water area.
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The R. derived from Hyperion imagery was applied to a previously developed
hyperspectral retrieval scheme to obtain properties of the water column, bottom reflectance,
and bottom depth. The derived absorption coefficients differ on average by - 16.5% when
compared with that measured in situ (over a range of 0.036 - 0.73 m-' for wavelengths of 410,
440, 490, 510, and 530 nm); while the derived bathymetry differs on average by just -11%
when compared with that from LIDAR measurements (over a range of -1 - 25 m).
Comparisons show that 76% of the Hyperion bathymetry values are within ±15% of the
LIDAR bathymetry; and 84% are within ±-20%. These results suggest excellent retrieval of
bathymetry from a space-borne hyperspectral imager (Hyperion). A key feature of this study
is that the entire top-down process of the image did not use (or need) a priori or in situ
information. The derived results of water column and bottom demonstrate further that, despite
its limited SNR and radiometric accuracy, Hyperion imagery is quite adequate for observation
and monitoring of bright coastal environments providing that sophisticated and robust
algorithms are implemented.

Given the importance of the coastal ecosystems for life quality and the global climate,
efficient and adequate information about the biogeochemical contents, water clarity,
bathymetry, and distribution of benthic habitats of coastal ecosystems is important for
government agencies and the public. There is an important but unmet need for regularly
updating our knowledge about the coastal environment and identifying locations of dramatic
change. The results of this study, and the many others, show the capability and usefulness of
hyperspectral sensors in monitoring coastal ecosystems [4]. Unfortunately, no such space-
borne sensors are in operational status yet, even though Hyperion is presently in orbit. The
MERIS satellite sensor of ESA, though not ideal in spatial and spectral configurations desired
for coastal remote sensing, does have 15 spectral bands covering the visible to infrared
domain and capable to collect data with a 300 m spatial resolution. Before an operational
satellite sensor with ideal spatial and spectral configurations is available, MERIS data, as
recently shown in Lee et al. [35], could be used as a surrogate for routine, though relatively
coarse, observations of many coastal environments.

15 30

12

0Ln-X 
0.Ln .-Y

_ 201

Fig. 8. Detailed bathymetry comparison between Hyperion data and LIDAR data for
the two transects (Ln_X and Ln_Y) in Fig. 6.
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